Transcriptional suppression of multidrug resistance-associated protein (MRP) gene expression by wild-type p53.
نویسندگان
چکیده
Multidrug resistance is a major obstacle to the success of cancer chemotherapy. The multidrug resistance-associated protein (MRP) has been shown to confer multidrug resistance. To study MRP gene expression at the transcriptional level, we have fused the MRP gene promoter with the luciferase reporter gene and studied its regulation. Cotransfection of MRP promoter constructs with p53 expression plasmids in p53-null human H1299 and mouse (10)1 cells demonstrated that the wild-type (wt) p53 markedly suppressed MRP promoter activity, whereas mutant p53 had little inhibitory effect. Transfections using 5' deletion mutant constructs of the MRP promoter showed that inhibition of the promoter activity by wt p53 mainly resided in the region from -91 to +103 bp, where several Sp1 transcription factor binding sites are localized. Cotransfection of the MRP promoter into Drosophila SL2 cells with an Sp1 expression vector increased the promoter activity in a dose-related manner up to approximately 200-fold. The stimulation of MRP promoter activity by Sp1 was attenuated by the cotransfection of a wt p53-expression plasmid. Furthermore, we have determined that endogenous MRP mRNA levels were down-regulated by restoration of wt p53-expression in a human lung cancer cell line. The relevance of MRP regulation in drug resistance was studied in a drug-resistant cell line, CEM/VM-1-5, that is approximately 140-fold more resistant to the epipodophyllotoxin, teniposide (VM-26), than the parental CEM cells. CEM/VM-1-5 cells express a much higher amount of MRP mRNA and protein than CEM cells, indicating that the resistant phenotype is at least partly due to increased MRP production. Transient transfection of the promoter constructs revealed that CEM/VM-1-5 cells had higher (7-fold) MRP promoter activity than CEM cells. Cotransfection of a wt p53-expression plasmid caused a reduction of MRP promoter activity in both CEM and CEM/VM-1-5 cells, but the inhibition was more than double in CEM/VM-1-5 cells compared with CEM cells. Our results demonstrated that wt p53 acts as a negative regulator of MRP gene transcription, at least in part by diminishing the effect of a powerful transcription activator Sp1. Therefore, a loss of wt p53 function and/or an increase in Sp1 activity in tumor cells could contribute to an up-regulation of the MRP gene.
منابع مشابه
The Effect of Wild Type P53 Gene Transfer on Growth Properties and Tumorigenicity of PANC-1 Tumor Cell Line
The p53 protein function is essential for the maintenance of the nontumorigenic cell phenotype. Pancreatic tumor cells show a very high frequency of p53 mutation. To determine if restoration of wild type p53 function can be used to eliminate the tumorigenic phenotype in these cells, pancreatic tumor cell lines, PANC-1 and HTB80, differing in p53 status were stably transfected with exogenous wil...
متن کاملEvidence that the multidrug resistance protein (MRP) functions as a co-transporter of glutathione and natural product toxins.
The MRP (multidrug resistance protein) gene, a member of the ubiquitous superfamily of ATP-binding cassette transporters, is associated with the multidrug resistance of mammalian cells to natural product anticancer agents. We have previously shown that abrogation of MRP expression by gene targeting leads to hypersensitivity to several drugs. In two independently produced MRP double knockout clo...
متن کاملForced expression of Hsp27 Reverses P-Glycoprotein (ABCB1) Mediated Drug Efflux and MDR1 Gene Expression in Adriamycin Resistant Human Breast Cancer Cells
Mutant p53 accumulation has been shown to induce multidrug resistance (MDR1) gene and ATP binding cassettes (ABCs)-based drug efflux in human breast cancer cells. In the present work we have found that transcriptional activation of the oxidative stress-responsive heat shock factor 1 (HSF-1) and expression of heat shock proteins, including Hsp27 which is normally known to augment proteosomal p53...
متن کاملDouble knockout of the MRP gene leads to increased drug sensitivity in vitro.
Overexpression of the multidrug resistance-associated protein (MRP) gene has been implicated in the resistance of tumor cell lines to a wide array of chemotherapeutic agents, but its normal physiological function(s) remains unknown. We have compared the sensitivity to chemotherapeutic drugs and toxins of wild-type W9.5 embryonic stem cells (ES) and of single and double MRP gene knockout cells d...
متن کاملThe human multidrug resistance-associated protein functionally complements the yeast cadmium resistance factor 1.
A Saccharomyces cerevisiae strain with a disrupted yeast cadmium resistance factor (YCF1) gene (DTY168) is hypersensitive to cadmium. YCF1 resembles the human multidrug resistance-associated protein MRP (63% amino acid similarity), which confers resistance to various cytotoxic drugs by lowering the intracellular drug concentration. Whereas the mechanism of action of YCF1 is not known, MRP was r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 58 24 شماره
صفحات -
تاریخ انتشار 1998